Остеокласты — это разрушители костной ткани

Тело человека состоит из множества клеток. Все они имеют разную структуру и выполняют разные функции. Но есть нечто, объединяющее все их разнообразие – это постоянный процесс обновления. Его можно рассмотреть на примере костных структур. Клетки остеокласты и остеобласты подобны бригадам по укладке асфальта: одни снимают старый асфальт, другие укладывают новый. Костная ткань непрерывно обновляется, и мозг контролирует эту работу.

Когда возникает сбой, всегда есть причина: или мозг дал не ту команду, или строительного материала не хватило, или остеобласты (клетки, строящие ткань) уменьшились в количестве. А остеокласты (разрушители) остались в прежнем числе. Это приводит к различным болезням, в частности, остеопорозу.

Костная ткань. Функции костной ткани. Строение костной ткани

В состав скелета любого взрослого человека входит 206 различных костей, все они различны по строению и роли. На первый взгляд они кажутся твердыми, негибкими и безжизненными. Но это ошибочное впечатление, в них непрерывно происходят различные обменные процессы, разрушение и регенерация. Они, в совокупности с мышцами и связками, образуют особую систему, что носит название «костно-мышечная ткань», основная функция которой — опорно-двигательная. Она образована из нескольких видов особых клеток, которые различаются по структуре, функциональным особенностям и значению. О костных клетках, их строение и функциях далее и пойдет речь.

Что такое остеокласты?

Текущая версия страницы пока

опытными участниками и может значительно отличаться от

, проверенной 20 октября 2017; проверки требует

Текущая версия страницы пока

опытными участниками и может значительно отличаться от

, проверенной 20 октября 2017; проверки требует

Остеокласты и остеобласты на трабекуле нижней челюсти коровьего эмбриона

Остеокласты

— гигантские многоядерные клетки позвоночных животных, удаляющие костную ткань посредством растворения минеральной составляющей и разрушения коллагена. Диаметр остеокласта около 40 мкм, они содержат 15-20 близко расположенных ядер. В сочетании с остеобластами остеокласты контролируют количество костной ткани (остеобласты создают новую костную ткань, а остеокласты разрушают старую).

Остеокласт является костным макрофагом (иначе говоря, моноцитом, дифференцировавшимся внутри костной ткани). Обычно он имеет множество лизосом. При выделении содержащихся в лизосомах гидролитических ферментов происходит резорбция основного вещества кости и обызвествленного хряща.

Тело человека состоит из множества клеток. Все они имеют разную структуру и выполняют разные функции. Но есть нечто, объединяющее все их разнообразие – это постоянный процесс обновления. Его можно рассмотреть на примере костных структур. Клетки остеокласты и остеобласты подобны бригадам по укладке асфальта: одни снимают старый асфальт, другие укладывают новый. Костная ткань непрерывно обновляется, и мозг контролирует эту работу.

Когда возникает сбой, всегда есть причина: или мозг дал не ту команду, или строительного материала не хватило, или остеобласты (клетки, строящие ткань) уменьшились в количестве. А остеокласты (разрушители) остались в прежнем числе. Это приводит к различным болезням, в частности, остеопорозу.

Кость – это орган тела, который постоянно обновляется. Он состоит из нескольких видов тканей, важнейшей из которых является костная. В развитом межклеточном веществе кости, богатом солями, работает три вида клеток:

Если охарактеризовать их коротко, это хранители, созидатели и разрушители.

Название этих клеток произошло от древнегреческих слов «кость» и «росток». Это молодые клетки, которые формируют костную ткань. Сначала они создают матрикс, сетку межклеточного вещества. После этого этапа остеобласты производят кальцификацию матрикса, сами при этом превращаясь в остеоциты.

Остеобласты имеют кубическую или пирамидальную форму. В них развита гранулярная эндоплазматическая сеть, синтезирующая белки. Комплекс Гольджи выводит их в строящуюся кость. Митохондрии обеспечивают нормальную жизнедеятельность клетки, обеспечивая ее энергией. Остеобласты могут делиться митозом.

Главная задача остеобластов — образование белков матрикса, к которым относятся коллаген, остеокальцин и остеопонтин. После их синтеза начинается откладывание в матриксе минеральных веществ. Также они выделяют оссеин, который склеивает соли кальция. В результате кость становится минерально-органической структурой.

Остеобласты помогают транспортировке кальция и фосфатов, что помогает в ощелачивании организма. При формировании кости они находятся на всей поверхности костных балок, а после – в местах разрушения и регенерации после травмы, а также в надкостнице.

Остеоцит называют клеткой зрелой костной ткани. Это дефинитивная клетка, то есть пришедшая к конечной форме. Она не имеет способности делиться путем митоза. Когда структура матрикса полностью заполнена минеральным веществом, остеобласт прекращает работу и клетка становится остеоцитом. Функция остеоцитов – обеспечить поддержание и регенерацию костей, а также регулирование минерального состава.

В структуре кости есть лакуны, в которых и находятся остеоциты. В процессе замуровывания остеобласты создают длинные отростки остеоцитов, которые соприкасаются друг с другом нексусами. Находящиеся около сосуда отростки получают питание и кислород от него. Количество таких отростков может быть очень большое, до нескольких сотен. Остеоцит имеет форму звезды из-за множества отростков, которые находятся в костных канальцах. После старения и апоптоза (самоуничтожения) канальцы пустеют.

Остеокласты представляют собой гигантские (диаметром 40 мкм) многоядерные клетки. Они разрушают кость путем растворения минеральных солей и разрушения коллагенового матрикса. Они имеют несколько ядер (от 5 до 20), много комплексов Гольджи, митохондрий и лизосом. Из лизосом выделяются ферменты, которые инициируют резорбцию кости.

Иначе говоря, остеокласт – это костный макрофаг. Он подходит к кости, прикрепляется к ней гофрированной каемкой и формирует мембрану, которая защищает окружение остеокласта от действия гормонов. Затем он продуцирует кислую среду, которая растворяет минеральные соли. После с помощью ферментов лизосом старые клетки перевариваются. Часть веществ уходит в кровь, остальная используется для поддержания процесса уничтожения кости.

Остеокласты работают группой. Они въедаются в старую кость и прокладывают в ней туннель. Ежедневный проход такой группы – 50 мкм. После прохода первой группы начинает движение вторая, состоящая из остеобластов. Они располагаются по стенкам туннеля и заполняют их поверхность. После этого они начинают синтезировать матрикс со скоростью 1 мкм в день. Одновременно с этим по оси тоннеля начинают прорастать капилляры.

Выстроив матрикс, остеобласты начинают замуровываться, создавая минерально-белковую структуру вокруг себя. По достижении цели, когда кость уже выстроена, в лакунах остаются остеоциты. Они живут некоторое время, после чего кончают жизнь самоуничтожением (апоптозом).

Процесс работы в тандеме двух видов костных клеток называется ремоделированием. Регулируется он гормонами паратиреоидных желез, активирующих остеокласты. Это паратиреоидный гормон. Щитовидая железа вырабатывает кальцитонин, который стимулирует образование костей. Кроме этих, в ремоделировании участвуют много других гормонов, которые вырабатывают половые железы, гипофиз и поджелудочная железа.

При нарушении работы гормонов может наблюдаться недостаток остеобластов или их угнетение. Вместе с активностью остеокластов это может привести к болезням. Например, остеопорозу и его последствиям: переломам и повреждениям суставов.

Для жизни необходима правильная работа всех частей организма, даже таких маленьких структур, как остеокласты. Это позволяет всем органам тела человека, от щитовидной железы до костей, взаимодействовать друг с другом. Вот почему нужны знания о здоровом образе жизни, правильном питании и сохранении здоровья. Тогда преждевременный остеопороз будет не страшен.

ОСТЕОКЛАСТЫ — (от остео… и греч. klao ломаю, разбиваю), костедробители, обычно многоядерные крупные клетки, разрушающие (резорбирующие) костную ткань и обызвествлённый хрящ с помощью выделяющихся из них гидролитич. ферментов, сконцентрированных в… … Биологический энциклопедический словарь

остеокласты — (остео… гр. klao разрушаю) многоядерные образования, возникающие при развитии и перестройке костной ткани; принимают участие в рассасывании основного вещества кости. Новый словарь иностранных слов. by EdwART, , 2009. остеокласты (тэ), ов, ед.… … Словарь иностранных слов русского языка

Остеокласты — (от остео… (См. Ocтeo…) и греч, kláō ломаю, разбиваю) клетки, разрушающие костную ткань при её перестройках у позвоночных животных и человека. Содержат от трёх до нескольких десятков ядер и очень много лизосом (См. Лизосомы),… … Большая советская энциклопедия

Остеокласты — см. Кости … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

остеокласты — остеокл асты, ов, ед. ч. л аст, а … Русский орфографический словарь

остеокласты — мн., Р. остеокла/стов; ед. остеокла/ст (2 м) … Орфографический словарь русского языка

Остеокласт — Остеокласты и остеобласты на трабекуле нижней челюсти коровьего эмбриона Остеокласты гигантские многоядерные клетки позвоночных животных, появляющиеся в местах рассасывания костных структур. Диаметр остеоклас … Википедия

Кость — I Кость (os) орган опорно двигательного аппарата, построенный преимущественно из костной ткани. Совокупность К., связанных (прерывно или непрерывно) соединительной тканью, хрящом или костной тканью, образует Скелет. Общее количество К. скелета… … Медицинская энциклопедия

КОСТЬ — плотная соединительная ткань, свойственная только позвоночным. Кость обеспечивает структурную опору организма, благодаря ей тело сохраняет свою общую форму и размеры. Местоположение некоторых костей таково, что они служат защитой для мягких… … Энциклопедия Кольера

Кость — У этого термина существуют и другие значения, см. Кость (значения). У этого термина существуют и другие значения, см. Кости (значения). Кость, как орган живого организма, сос … Википедия

Строение костной ткани

Это отдельный вид соединительной ткани, из нее образуются все кости в человеческом теле. В ее состав входят особые клетки и межклеточное вещество. Последнее включает органический матрикс, состоящий из коллагеновых волокон (90-95% от общей массы) и минеральных компонентов, в основном солей кальция (5-10%). Благодаря такому составу костная ткань человека имеет гармоничное сочетание твердости и эластичности. Различают три группы клеток: остеокласты (слева), остеобласты (посередине), остеоциты (справа на фото).

Более подробно остановимся на них далее. Коллаген, содержащийся в матриксе, имеет отличия от своих аналогов, находящихся в других тканях, главным образом за счет того, что содержит больше специфических полипептидов. Волокна расположены, как правило, параллельно уровню наиболее вероятных нагрузок на кость. Именно благодаря нему сохраняется эластичность и упругость.

Если кость подвергнуть действию соляной кислоты, то минеральные вещества будут растворены, а вот органические (оссеин) останутся. Они сохранят форму, но станут чрезмерно гибкими и сильно подверженными деформированию. Такое состояние характерно для маленьких детей. У них высоко содержание оссеина, поэтому кости более эластичны, чем у взрослых. И обратный случай, когда теряются органические вещества, но остаются минеральные. Это происходит, если, к примеру, кость обжечь: она сохранит свою форму, но приобретет вместе с тем сильную хрупкость и может разрушиться даже от незначительного прикосновения. Такие изменения состав костной ткани претерпевает в старости. Доля минеральных солей доходит до 80% от всей массы. Поэтому пожилые люди более подвержены различного рода переломам и травмам.

Если установить плотность костной ткани (объем), то это позволит оценить прочность скелета и его отдельных частей. Такие исследования проводятся с использованием компьютерной томографии. Своевременная диагностика позволяет начать лечение или поддерживающую терапию вовремя.

Работа в тандеме

Остеокласты работают группой. Они въедаются в старую кость и прокладывают в ней туннель. Ежедневный проход такой группы – 50 мкм. После прохода первой группы начинает движение вторая, состоящая из остеобластов. Они располагаются по стенкам туннеля и заполняют их поверхность. После этого они начинают синтезировать матрикс со скоростью 1 мкм в день. Одновременно с этим по оси тоннеля начинают прорастать капилляры.

Выстроив матрикс, остеобласты начинают замуровываться, создавая минерально-белковую структуру вокруг себя. По достижении цели, когда кость уже выстроена, в лакунах остаются остеоциты. Они живут некоторое время, после чего кончают жизнь самоуничтожением (апоптозом).

Процесс работы в тандеме двух видов костных клеток называется ремоделированием. Регулируется он гормонами паратиреоидных желез, активирующих остеокласты. Это паратиреоидный гормон. Щитовидая железа вырабатывает кальцитонин, который стимулирует образование костей. Кроме этих, в ремоделировании участвуют много других гормонов, которые вырабатывают половые железы, гипофиз и поджелудочная железа.

При нарушении работы гормонов может наблюдаться недостаток остеобластов или их угнетение. Вместе с активностью остеокластов это может привести к болезням. Например, остеопорозу и его последствиям: переломам и повреждениям суставов.

Остеобласты (активные): особенности строения

Остеобласты – это клетки костной ткани, располагающиеся в верхних ее слоях, имеющие многоугольную, кубическую форму с различного вида отростками. Внутреннее содержимое мало чем отличается от других. Хорошо развитый зернистый эндоплазматический ретикуллум содержит различные элементы, рибосомы, аппарат Гольджи, округлой или овальной формы ядро богатое хроматином и содержащее ядрышко. Снаружи эти клетки костной ткани окружены тончайшими микрофибриллами.

Главная функция остеобластов – синтез компонентов межклеточного вещества. Это коллаген (преимущественно первого типа), гликопротеины матрикса (остеокальцин, остеонектин, остеопонтин, костный сиалопротеин), протеогликаны (бигликан, гиалуроновая кислота, декорин), а также различные костные морфогенетические белки, факторы роста, ферменты, фосфопротеины. Нарушение выработки всех этих соединений остеобластами наблюдается при некоторых заболеваниях. Например, недостаток витамина С (цинга) у детей характеризуется нарушением развития и роста костей вследствие дефекта синтеза коллагена и гликозаминогликанов. По этой же причине и замедляется восстановление костной ткани, заживление при переломах. Так как остеобласты фактически отвечают за рост, то присутствуют исключительно в развивающейся костной ткани.

Механизм минерализации остеобластами органического матрикса

Существует два способа:

  1. Отложение кристаллов гидроксилата вдоль фибрилл коллагена из перенасыщенной внеклеточной жидкости. Особую роль при этом отводят некоторым протеогликанам, которые связывают кальций и удерживают его в зонах зазоров.
  2. Секреция особых матричных пузырьков. Это мелкие мембранные структуры, которые синтезируются и выделяются остеобластами. В них в большой концентрации содержится фосфат кальция и щелочная фосфатаза. Особая микросреда, создаваемая внутри пузырьков, благоприятствует образованию первых гидроксиапатитовых кристаллов.

Скорость минерализации остеоида (костная ткань на стадии формирования) может существенно меняться, в норме она занимает около 15 суток. Нарушения могут происходить при снижении концентрации ионов кальция в крови или фосфата. Результатом этого является размягчение и деформация костей – остеомаляция. Аналогичные нарушения наблюдаются, например, при рахите (дефицит витамина D).

Неактивные (покоящиеся) остеобласты

Они образуются из активных остеобластов, у нерастущей кости покрывают около 80-95% ее поверхности. Они имеют уплощенную форму с веретеновидным ядром. Остальные органеллы редуцированы. Но сохраняются рецепторы, реагирующие на различные гормоны и факторы роста. Между покоящимися остеобластами и остеоцитами сохраняется связь и таким образом образуется система, регулирующая минеральный обмен. Если происходит какое-либо повреждение (травмы, переломы), то они активизируются, и начинается активный синтез коллагена, выработка органического матрикса. Другими словами, за счет их происходит регенерация костных тканей. В то же время они могут быть причиной злокачественной опухоли – остеосаркомы.

Остеоциты: строение и функции

Эти клетки составляют основу зрелой костной ткани. Форма у них веретенообразная, с множеством отростков. Органелл значительно меньше по сравнению с остеобластами, есть округлое ядро (в нем преобладает гетеохроматин) с ядрышком. Остеоциты располагаются в лакунах, но непосредственно с матриксом не соприкасаются, а окружены тонким слоем костной жидкости. За счет нее осуществляется питание клеток.

Аналогично отделены и их отростки, имеющие достаточно большую длину до 50 мкм, располагающиеся в специальных канальцах. Их очень много, костная ткань буквально пронизана ими, они образуют ее дренажную систему, в которой и содержится тканевая жидкость. Через нее осуществляется обмен веществ между межклеточным веществом и клетками. Также стоит отметить, что они не делятся, а образуются из остеобластов и являются основными компонентами в сформировавшейся костной ткани.

Основная функция остеоцитов – поддержание нормального состояния костного матрикса и баланса кальция и фосфора в организме. Они способны воспринимать механические напряжения, и чувствительны к электрическим потенциалам, возникающим при действии деформирующих сил. Реагируя на них, они запускают локальный процесс, при котором соединительная костная ткань начинает перестраиваться.

Остеобласты

Название этих клеток произошло от древнегреческих слов «кость» и «росток». Это молодые клетки, которые формируют костную ткань. Сначала они создают матрикс, сетку межклеточного вещества. После этого этапа остеобласты производят кальцификацию матрикса, сами при этом превращаясь в остеоциты.

Остеобласты имеют кубическую или пирамидальную форму. В них развита гранулярная эндоплазматическая сеть, синтезирующая белки. Комплекс Гольджи выводит их в строящуюся кость. Митохондрии обеспечивают нормальную жизнедеятельность клетки, обеспечивая ее энергией. Остеобласты могут делиться митозом.

Главная задача остеобластов — образование белков матрикса, к которым относятся коллаген, остеокальцин и остеопонтин. После их синтеза начинается откладывание в матриксе минеральных веществ. Также они выделяют оссеин, который склеивает соли кальция. В результате кость становится минерально-органической структурой.

Остеобласты помогают транспортировке кальция и фосфатов, что помогает в ощелачивании организма. При формировании кости они находятся на всей поверхности костных балок, а после – в местах разрушения и регенерации после травмы, а также в надкостнице.

Остеоцит называют клеткой зрелой костной ткани. Это дефинитивная клетка, то есть пришедшая к конечной форме. Она не имеет способности делиться путем митоза. Когда структура матрикса полностью заполнена минеральным веществом, остеобласт прекращает работу и клетка становится остеоцитом. Функция остеоцитов – обеспечить поддержание и регенерацию костей, а также регулирование минерального состава.

В структуре кости есть лакуны, в которых и находятся остеоциты. В процессе замуровывания остеобласты создают длинные отростки остеоцитов, которые соприкасаются друг с другом нексусами. Находящиеся около сосуда отростки получают питание и кислород от него. Количество таких отростков может быть очень большое, до нескольких сотен. Остеоцит имеет форму звезды из-за множества отростков, которые находятся в костных канальцах. После старения и апоптоза (самоуничтожения) канальцы пустеют.

Остеокласты

Такое название получили крупные клетки, содержащие от 5 до 100 ядер, имеющие моноцитарное происхождение, разрушающие кости и хрящи или, по-другому, вызывающие их резорбцию. В цитоплазме остеокластов содержится много митохондрий, элементов ЭПС (зернистой) и аппарат Гольджи, рибосомы, а также различные по функции лизосомы. В ядрах содержится большое количество хроматина и есть хорошо различимые ядрышки. Также имеется достаточное количество цитоплазматических отростков, больше всего их располагается на поверхности, прилегающей к разрушаемой кости. Они увеличивают площадь соприкосновения с ней. Костная ткань начинает разрушаться при повышении уровня особого гормона (паратиреоидного), который приводит к активации остеокластов. Механизм этого процесса связывают с выделением ими углекислого газа, который под воздействием специального фермента (карбоангидраза) превращается в кислоту, имеющую название угольная, она и растворяет соли кальция.

Остеокласты — это разрушители костной ткани

Тело человека состоит из множества клеток. Все они имеют разную структуру и выполняют разные функции. Но есть нечто, объединяющее все их разнообразие – это постоянный процесс обновления. Его можно рассмотреть на примере костных структур. Клетки остеокласты и остеобласты подобны бригадам по укладке асфальта: одни снимают старый асфальт, другие укладывают новый. Костная ткань непрерывно обновляется, и мозг контролирует эту работу.

Когда возникает сбой, всегда есть причина: или мозг дал не ту команду, или строительного материала не хватило, или остеобласты (клетки, строящие ткань) уменьшились в количестве. А остеокласты (разрушители) остались в прежнем числе. Это приводит к различным болезням, в частности, остеопорозу.

Механизм резорбции костной ткани

Стоит отметить, что процесс разрушения протекает циклически, и периоды высокой активности каждой клетки неизменно сменяются периодами покоя. Резорбция протекает в несколько этапов:

  1. Прикрепление остеокласта к разрушаемой поверхности кости, при этом наблюдается выраженная перестройка его цитоскелета.
  2. Окисление содержимого лакун. Это происходит либо путем выделения в них содержимого вакуолей, имеющего кислую среду, либо в результате действия протонных насосов.
  3. Разрушение минерального компонента матрикса.
  4. Растворение органических соединений в результате действия ферментов, секретируемых остеокластами в лакуну и активированными кислой средой.
  5. Выведение продуктов разрушения костной ткани.

Регуляция деятельности остеокластов определяется общими и местными факторами. К первым, например, относятся паратгормон, витамин D, они стимулируют активность. А угнетающими являются кальцитонин и эстрогены. К местным относится такой фактор, как создание электрического локального поля при механическом напряжении, к которому эти клетки очень чувствительны.

Клетки остеокласты

Остеокласты представляют собой гигантские (диаметром 40 мкм) многоядерные клетки. Они разрушают кость путем растворения минеральных солей и разрушения коллагенового матрикса. Они имеют несколько ядер (от 5 до 20), много комплексов Гольджи, митохондрий и лизосом. Из лизосом выделяются ферменты, которые инициируют резорбцию кости.

Иначе говоря, остеокласт – это костный макрофаг. Он подходит к кости, прикрепляется к ней гофрированной каемкой и формирует мембрану, которая защищает окружение остеокласта от действия гормонов. Затем он продуцирует кислую среду, которая растворяет минеральные соли. После с помощью ферментов лизосом старые клетки перевариваются. Часть веществ уходит в кровь, остальная используется для поддержания процесса уничтожения кости.

Строение грубоволокнистой костной ткани

Второе ее название — ретикулофиброзная. Она формируется у зародыша, как будущая основа костей. У взрослого же человека ее присутствие минимально, она сохраняется в швах черепа после того, как они зарастают и в зонах, где сухожилия прикрепляются к костям, а также в участках остеогенеза, например, при заживлении различного рода переломов. Строение костной ткани этого вида специфическое. Коллагеновые волокна собраны в плотные пучки, которые расположены неупорядоченно, имеют между собой «перекладины». Она обладает низкой механической прочностью, содержание остеоцитов значительно выше по сравнению с пластинчатой разновидностью. В патологических условиях наращивание костной ткани этого типа происходит при переломе кости или при болезни Педжета.

Особенности пластинчатой костной ткани

Она образована костными пластинками, имеющими толщину 4-15 мкм. Они, в свою очередь, состоят их трех компонентов: остеоцитов, основного вещества и коллагеновых тонких волокон. Из этой ткани образованы все кости взрослого человека. Волокна коллагена первого типа лежат параллельно относительно друг друга и ориентированы в определенном направлении, у соседних же костных пластинок они направлены в противоположную сторону и перекрещиваются практически под прямым углом. Между ними находятся тела остеоцитов в лакунах. Такое строение костной ткани обеспечивает ей наибольшую прочность.

Губчатое вещество кости

Встречается также название «трабекулярное вещество». Если проводить аналогию, то структура сравнима с обычной губкой, построенной из костных пластинок с ячейками между ними. Расположены они упорядоченно, в соответствии с распределенной функциональной нагрузкой. Из губчатого вещества в основном построены эпифизы длинных костей, часть смешанных и плоских и все короткие. Видно, что в основном это легкие и в то же время прочные части скелета человека, которые испытывают нагрузку в различных направлениях. Функции костной ткани находятся в прямой взаимосвязи с ее строением, которое в данном случае обеспечивает большую площадь для метаболических процессов, осуществляемых на ней, придает высокую прочность в совокупности с небольшой массой.

Плотное (компактное) вещество кости: что это?

Из компактного вещества состоят диафизы трубчатых костей, кроме того, оно тонкой пластинкой покрывает их эпифизы снаружи. Его пронизывают узкие каналы, через них проходят нервные волокна и кровеносные сосуды. Некоторые из них располагаются параллельно костной поверхности (центральные или гаверсовы). Другие выходят на поверхность кости (питательные отверстия), через них внутрь проникают артерии и нервы, а наружу — вены. Центральный канал, в совокупности с окружающими его костными пластинками, образует так называемую гаверсову систему (остеон). Это основное содержимое компактного вещества и их рассматривают как его морфофункциональную единицу.

Остеон – структурная единица костной ткани

Второе его название — гаверсова система. Это совокупность костных пластинок, имеющих вид цилиндров вставленных друг в друга, пространство между ними заполняют остеоциты. В центре располагается гаверсов канал, через него проходят обеспечивающие обмен веществ в костных клетках кровеносные сосуды. Между соседними структурными единицами есть вставочные (интерстициальные) пластинки. По сути, они являются остатками остеонов, существовавших ранее и разрушившихся в тот момент, когда костная ткань претерпевала перестройку. Также существуют еще генеральные и окружающие пластинки, они образуют самый внутренний и наружный слой компактного вещества кости соответственно.

Остеоциты

Остеоцит называют клеткой зрелой костной ткани. Это дефинитивная клетка, то есть пришедшая к конечной форме. Она не имеет способности делиться путем митоза. Когда структура матрикса полностью заполнена минеральным веществом, остеобласт прекращает работу и клетка становится остеоцитом. Функция остеоцитов – обеспечить поддержание и регенерацию костей, а также регулирование минерального состава.

В структуре кости есть лакуны, в которых и находятся остеоциты. В процессе замуровывания остеобласты создают длинные отростки остеоцитов, которые соприкасаются друг с другом нексусами. Находящиеся около сосуда отростки получают питание и кислород от него. Количество таких отростков может быть очень большое, до нескольких сотен. Остеоцит имеет форму звезды из-за множества отростков, которые находятся в костных канальцах. После старения и апоптоза (самоуничтожения) канальцы пустеют.

Надкостница: строение и значение

Исходя из названия, можно определить, что она покрывает кости снаружи. Прикрепляется она к ним с помощью коллагеновых волокон, собранных в толстые пучки, которые проникают и сплетаются с наружным слоем костных пластинок. Имеет два выраженных слоя:

  • наружный (его образует плотная волокнистая, неоформленная соединительная ткань, в ней преобладают волокна, располагающиеся параллельно к поверхности кости);
  • внутренний слой хорошо выражен у детей и менее заметен у взрослых (образован рыхлой волокнистой соединительной тканью, в которой есть веретенообразные плоские клетки – неактивные остеобласты и их предшественники).

Надкостница выполняет несколько важных функций. Во-первых, трофическую, то есть обеспечивает кость питанием, поскольку на поверхности содержит сосуды, которые проникают внутрь вместе с нервами через специальные питательные отверстия. Эти каналы питают костный мозг. Во-вторых, регенераторную. Она объясняется наличием остеогенных клеток, которые при стимуляции трансформируются в активные остеобласты, вырабатывающие матрикс и вызывающие наращивание костной ткани, обеспечивающие ее регенерацию. В-третьих, механическую или опорную функцию. То есть обеспечение механической связи кости с другими прикрепляющимися к ней структурами (сухожилиями, мышцами и связками).

Взаимодействие остеокластов и остеобластов

Статья была опубликована в: Lietal. (2016) Osteoclast-Derived Exosomal miR-214-3p Inhibits Osteoblastic Bone Formation.

Источник: University of Western Australia; Photo: Shutterstock.

Предупреждение:

Открытый профессором Струковым В.И. анаболический способ лечения остеопороза с помощью препаратов «Остеомед», «Остео-вит» согласуется с физиологией человека. Профессор Струков В.И. выступает против применения бисфосфонатов при лечении остеопороза, так как бисфосфонаты тормозят функцию остеокластов и тем самым грубо вмешиваются в физиологию человека. Профессор Струков В.И. считает, что костная система человека построена очень разумно, и остеокласт никогда не разрушает остеоциты, если того не требует организм (процесс ремоделирования кости). Поэтому мешать работе остеокласта ни в коем случае нельзя. Исследования австралийских ученых подтверждают правоту профессора Струкова и показывают, что между остеокластами и остеобластами существует сигнальный обмен. И повышение активности остеокластов повышает и активность остеобластов. Поэтому применение бисфосфонатов, тормозящих функцию остеокластов приводит также к подавлению и функции остеобластов.

Блокирование микро-РНК для предупреждения остеопороза.

Ориентация (на мишень) микро-РНК (RNA — miR-214-3p), повышенный уровень которой обнаруживается у пожилых женщин, мог бы помочь в лечении остеопороза.

МикроРНК (microRNA, miRNA) — «малые» некодирующие молекулы РНК длиной 18-25 нуклеотидов (в среднем 22), обнаруженные у растений, животных и некоторых вирусов, принимающие участие в транскрипционной и посттранскипционной регуляции экспрессии генов путем РНК-интерференции. – Прим.перев.

Исследователи из Гонконгского Баптистского университета определили микро-РНК (miRNA), вырабатываемые костными клетками естественным путем, которые стимулируют рост костей. Их открытия, опубликованные в «NatureCommunications», могли бы привести к новым методам лечения остеопороза.

Остеопороз является распространенным заболеванием, которое делает кость ломкой и приводит к повышенному риску переломов. Главная причина переломов костей у пожилых людей — так называемая «молчаливая болезнь»: вы редко знаете о ней, пока у вас не произойдет перелома кости. Остеопороз возникает, когда кости теряют минералы, в частности кальций, гораздо быстрее, чем организм может заменить их, вызывая тем самым потерю плотности кости.

Чтобы лучше понять клеточный механизм потери костной массы, группа исследователей сосредоточила свое внимание на двух типах клеток: остеокластах, отвечающих за костную резорбцию и вызывающих переломы кости, и остеобластах, формирующих кости и регулярно создающих перекрестные помехи (cross-talk) в организме.

“Ремоделирование костей регулируют два типа клеток, причем каждая – разными путями,” – говорит соавтор XuJiake, профессор Университета Западной Австралии (University of Western Australia).

“Один классический путь, который они проделывают, это путь производства белков, затем выработка и связывание его с рецептором другой клетки или же через межклеточных контакт”.

Кроме клеточного сигнализирования, основанного на белках, исследователи обнаружили, что остеокласты могли бы также производить «малые» smallsac-ikestructurescontainingmiRNAsthatcouldcommunicatewithothercells.

“Мы открыли, что остеокласты могут посылать сигнал остеобластам о стимуляции костного роста, так что если мы нашли бы способ манипулировать этим, то вместо способствования росту костной массы, это приводило бы к новому методу лечения остеопороза,” – сказал он.

Читать больше в «Asian Scientist Magazine»: https://www.asianscientist.com/2016/03/in-the-lab/osteoporosis-microrna-mir-214-3p/

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]